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We have calculated the Tsallis entropy and Fisher information matrix �entropy� of spatially correlated
nonextensive systems, by using an analytic non-Gaussian distribution obtained by the maximum entropy
method. The effects of the correlated variability on the Fisher information matrix are shown to be different
from those on the Tsallis entropy. The Fisher information is increased �decreased� by a positive �negative�
correlation, whereas the Tsallis entropy is decreased with increasing absolute magnitude of the correlation,
independently of its sign. This fact arises from the difference in their characteristics. It implies from the
Cramér-Rao inequality that the accuracy of an unbiased estimate of fluctuation is improved by a negative
correlation. A critical comparison is made between the present study and previous ones employing the Gauss-
ian approximation for the correlated variability due to multiplicative noise.
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I. INTRODUCTION

It is well known that the Tsallis entropy and Fisher infor-
mation entropy �matrix� are very important quantities ex-
pressing information measures in nonextensive systems. The
Tsallis entropy for an N-unit nonextensive system is defined
by �1–3�

Sq
�N� =

�1 − cq
�N��

�q − 1�
, �1�

with

cq
�N� =� �p�N���xi���q�

i
dxi, �2�

where q is the entropic index �0�q�3�, and p�N���xi�� de-
notes the probability distribution of N variables �xi�. In the
limit of q→1, the Tsallis entropy reduces to the Boltzmann-
Gibbs-Shannon entropy given by

S1
�N� = −� p�N���xi��ln p�N���xi���

i
dxi. �3�

The Boltzmann-Gibbs-Shannon entropy is extensive in the
sense that, for a system consisting of N independent but
equivalent subsystems, the total entropy is the sum of the
constituent subsystems: S1

�N�=NS1
�1�. In contrast, the Tsallis

entropy is nonextensive: Sq
�N��NSq

�1� for q�1.0, and 	q−1	
expresses the degree of nonextensivity of a given system.
The Tsallis entropy is the basis of nonextensive statistical
mechanics, which has been successfully applied to a wide
class of systems including physics, chemistry, mathematics,
biology, and others �3�.

The Fisher information matrix provides us with an impor-
tant measure of information �4�. Its inverse expresses the
lower bound of decoding errors for an unbiased estimator in
the Cramér-Rao inequality. It denotes also the distance be-
tween neighboring points in the Riemann space spanned by
probability distributions in the information geometry. The

Fisher information matrix expresses a local measure of a
positive amount of information whereas the Boltzmann-
Gibbs-Shannon-Tsallis entropy represents a global measure
of ignorance �4�. In recent years, many authors have inves-
tigated the Fisher information in nonextensive systems
�5–17�. In a previous paper �17�, we pointed out that two
types of generalized and extended Fisher information matri-
ces are necessary for nonextensive systems �17�. The gener-
alized Fisher information matrix gij

�N� obtained from the gen-
eralized Kullback-Leibler divergence in conformity with the
Tsallis entropy is expressed by

gij
�N� = qE
� � ln p�N���xi��

��i
�� � ln p�N���xi��

�� j
� , �4�

where E�¯� denotes the average over p�N���xi��
�=p�N���xi� ; ��k��� characterized by a set of parameters ��k�.
On the contrary, the extended Fisher information matrix g̃ij

�N�

derived from the Cramér-Rao inequality in nonextensive sys-
tems is expressed by �17�

g̃ij
�N� = Eq
� � ln Pq

�N���xi��
��i

�� � ln Pq
�N���xi��
�� j

� , �5�

where Eq�¯� expresses the average over the escort probabil-
ity Pq

�N���xi�� given by

Pq
�N���xi�� =

�p�N���xi���q

cq
�N� , �6�

cq
�N� being given by Eq. �2�. In the limit of q=1.0, both the

generalized and extended Fisher information matrices reduce
to the conventional Fisher information matrix.

Studies of the information entropies have been made
mainly for independent �uncorrelated� systems. The effects
of correlated noise and inputs on the Fisher information ma-
trix and Shannon’s mutual information have been extensively
studied in neuronal ensembles �for a recent review, see Ref.
�18�, and related references therein�. It is a fundamental
problem in neuroscience to determine whether correlations in
neural activity are important for decoding, and what is the
impact of correlations on information transmission. When
neurons fire independently, the Fisher information increases*hideohasegawa@goo.jp
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proportionally to the population size. In ensembles with
limited-range correlations, however, the Fisher information
is shown to saturate as a function of population size �19–21�.
In recent years the interplay between fluctuations and corre-
lations in nonextensive systems has been investigated
�22–24�. It has been demonstrated that, in some globally cor-
related systems, the Tsallis entropy becomes extensive while
the Boltzmann-Gibbs-Shannon entropy is nonextensive �22�.
Thus the correlation plays an important role in discussing the
properties of information entropies in nonextensive systems.

It is the purpose of the present paper to study the effects
of spatially correlated variability on the Tsallis entropy and
Fisher information in nonextensive systems. In Sec. II, we
will discuss information entropies of correlated nonextensive
systems, by using probability distributions derived by the
maximum entropy method �MEM�. In Sec. III, we discuss
the marginal distribution to study the properties of probabil-
ity distributions obtained by the MEM. Previous related stud-
ies are critically discussed also. The final Sec. IV is devoted
to our conclusion. In Appendix A, results of the MEM for
uncorrelated, nonextensive systems are briefly summarized
�6,9,10,17,25�.

II. CORRELATED NONEXTENSIVE SYSTEMS

A. The case of N=2

We consider correlated N-unit nonextensive systems, for
which the probability distribution is derived with the use of
the MEM under the constraints given by

1 =� p�N���xi���
i
dxi, �7�

� =
1

N
�

i

Eq�xi� , �8�

�2 =
1

N
�

i

Eq��xi − ��2� , �9�

s�2 =
1

N�N − 1��i
�

j��i�
Eq��xi − ���xj − ��� , �10�

�, �2, and s expressing the mean, variance, and degree of the
correlated variability, respectively. Cases with N=2 and ar-
bitrary N will be separately discussed in Secs. II A and II B,
respectively.

For a given correlated nonextensive system with N=2, the
MEM with constraints given by Eqs. �7�–�10� yields �details
being explained in Appendix B�

p�2��x1,x2� =
1

Zq
�2� expq
− �1

2
��

i=1

2

�
j=1

2

Aij�xi − ���xj − �� ,

�11�

with

Aij = a�ij + b�1 − �ij� , �12�

a =
1

�q
�2��2�1 − s2�

, �13�

b = −
s

�q
�2��2�1 − s2�

, �14�

Zq
�2� =�

2�q
�2��2rq

�2�

�q − 1�
B�1

2
,

1

q − 1
−

1

2
�B�1

2
,

1

q − 1
− 1� for 1 � q � 3, �15�

2��2rq
�2� for q = 1, �16�

2�q
�2��2rq

�2�

�1 − q�
B�1

2
,

1

1 − q
+ 1�B�1

2
,

1

1 − q
+

3

2
� for 0 � q � 1, �17��

rq
�2� = �1 − s2, �18�

�q
�2� = �2 − q� , �19�

where B�x ,y� denotes the Beta function and expq�x� ex-
presses the q-exponential function defined by

expq�x� � �1 + �1 − q�x�1/�1−q�. �20�

The matrix A with elements Aij is expressed by the inverse of
the covariant matrix Q given by

A = Q−1, �21�

with

Qij = �q
�2��2��ij + s�1 − �ij�� for i, j = 1,2. �22�

In the limit of q=1.0, the distribution p�2��x1 ,x2� reduces to

p�2��x1,x2� =
1

2��2�1 − s2

	exp
− �1

2
��

i=1

2

�
j=1

2

�xi − ���Q−1�ij�xj − �� ,

�23�

which is nothing but the Gaussian distribution for N=2.
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We have calculated information entropies by using the
distribution given by Eq. �11�.

1. Tsallis entropy

We obtain

Sq
�2� = ��1 + ln�2��2�� + ln�rq

�2�� for q = 1, �24�
1 − cq

�2�

q − 1
for q � 1, �25��

with

cq
�2� = �q

�2��Zq
�2��1−q, �26�

where Zq
�2� is given by Eqs. �15�–�17�. From rq

�2� given by
Eqs. �18�, we may obtain the s dependence of cq

�2� as given
by

cq
�2��s� = cq

�2��0��1 − s2��1−q�/2 �27�

�cq
�2��0��1 +

�q − 1�
2

s2� for 	s	 
 1, �28�

which yields

Sq
�2��s� � Sq

�2��0� −
cq

�2��0�
2

s2 for 	s	 
 1. �29�

Figure 1�a� shows Sq
�N� /N as a function of the correlation s

for N=2 �values of �=0.0 and �2=1.0 are hereafter adopted
in the model calculations shown in Figs. 1–7�. We note that
the Tsallis entropy is decreased with increasing absolute
value of s, independently of its sign.

2. Fisher information

By using Eqs. �4� and �5� for �i=� j =�, we obtain the
Fisher information matrices given by

gq
�2� =

2

�2�1 + s�
, �30�

g̃q
�2� =

2q

�2q − 1��2 − q��2�1 + s�
, �31�

which show that gq
�2� is independent of q and that the inverses

of both matrices are proportional to �2�1+s�. Figure 2 shows
the s dependence of the extended Fisher information for N
=2, whose inverse is increased �decreased� for a positive
�negative� s, depending on the sign of s, in contrast to Sq.

B. The case of arbitrary N

It is possible to extend our approach to the case of arbi-
trary N, for which the MEM with the constraints given by
Eqs. �7�–�10� leads to the distribution given by �details being
given in Appendix B�
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FIG. 1. s dependence of the Tsallis entropy per element, Sq
�N� /N,

with �a� N=2 and �b� 10 for various q values with �=0.0 and �2

=1.0; the s value is allowed to be −1.0�s�1.0 for N=2, and
−0.11�s�1.0 for N=10 �Eq. �43��.
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FIG. 2. s dependence of the inverse of the extended Fisher in-
formation g̃q

�2� for various q values with N=2 ��=0.0, �2=1.0�.
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FIG. 3. �Color online� �a� N dependence of the Tsallis entropy
per element, Sq

�N� /N, for q�1.0: �q ,s�= �0.8,0.0� �filled circles�,
�0.8,0.5� �filled squares�, �0.9,0.0� �open circles�, and �0.9,0.5�
�open squares�. �b� Sq

�N� /N for q�1.0: �q ,s�= �1.01,0.0� �filled
circles�, �1.01,0.5� �filled squares�, �1.05,0.0� �open circles�, and
�1.05,0.5� �open squares�. Dashed curves denote exact results given
by Eq. �A13� �Figs. 7�a� and 7�b�� in Appendix A. Note the loga-
rithmic and linear vertical scales in �a� and �b�, respectively.
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p�N���xi�� =
1

Zq
�N� expq
− �1

2
��

i=1

N

�
j=1

N

Aij�xi − ���xj − �� ,

�32�

with

Aij = a�ij + b�1 − �ij� , �33�

a =
�1 + �N − 2�s�

�q
�N��2�1 − s��1 + �N − 1�s�

, �34�

b = −
s

�q
�N��2�1 − s��1 + �N − 1�s�

, �35�

Zq
�N� =�

�2�q
�N��2�N/2rq

�N�

�q − 1�N/2 �
i=1

N

B�1

2
,

1

q − 1
−

i

2
� for 1 � q � 3, �36�

�2��2�N/2rq
�N� for q = 1, �37�

�2�q
�N��2�N/2rq

�N�

�1 − q�N/2 �
i=1

N

B�1

2
,

1

1 − q
+

�i + 1�
2

� for 0 � q � 1, �38��
rq

�N� = ��1 − s�N−1�1 + �N − 1�s��1/2, �39�

�q
�N� =

��N + 2� − Nq�
2

. �40�

The matrix A is expressed by the inverse of the covariant
matrix Q whose elements are given by

Qij = �q
�N��2��ij + s�1 − �ij�� . �41�

In the limit of q=1.0, the distribution given by Eq. �32�
becomes the multivariate Gaussian distribution given by

p��xi��  exp
− �1

2
��

ij

�xi − ���Q−1�ij�xj − �� . �42�

It is necessary to note that there is a condition for a physi-
cally conceivable s value given by �see Eq. �C8�, details
being discussed in Appendix C�

sL � s � sU, �43�

where the lower and upper critical s values are given by sL
=−1 / �N−1� and sU=1.0, respectively. In the cases of N=2
and 10, for example, we obtain sL=−1.0 and sL=−0.11, re-
spectively.

By using the probability distribution given by Eq. �32�,
we have calculated information entropies whose s depen-
dences are given as follows.

1. Tsallis entropy

We obtain
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FIG. 4. N dependences of inverses of the Fisher information
matrices, gq

�1� /gq
�N� and g̃q

�1� / g̃q
�N�, for various s values given by Eq.

�51�; results for s=−0.05 and s=−0.1 are valid for N�21 and N
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FIG. 5. Probability distribution of N=2 systems, p�2��x1 ,x2� �Eq.
�11��, for �a� s=0.0 and �b� 0.5 with q=1.5 as a function of x1 for
x2=0.0, 0.5, and 1.0.
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Sq
�N� = �

N

2
�1 + ln�2��2�� + ln�rq

�N�� for q = 1, �44�

1 − cq
�N�

q − 1
for q � 1, �45��

with

cq
�N� = �q

�N��Zq
�N��1−q, �46�

�cq
�N��0��1 +

�q − 1�N�N − 1�
4

s2�
for 	s	 
 2/�N�N − 1� , �47�

where the s dependence of cq
�N� arises from the factor of rq

�N�

in Eq. �39�, and cq
�N��0� expresses the s=0.0 value of

cq
�N�. Equation �46� yields the s-dependent Sq

�N� given by

Sq
�N��s� � Sq

�N��0� − �N�N − 1�cq
�N��0�

4
�s2

for 	s	 
 2/�N�N − 1� , �48�

where Sq
�N��0� stands for the Tsallis entropy for s=0.0. The

region where Eqs. �47� and �48� hold becomes narrower for
larger N.

The s dependence of Sq
�N� /N for N=10 is shown in Fig.

1�b�, where Sq
�N� /N has a peak at s=0.0 and it is decreased

with increasing 	s	. Comparing Fig. 1�b� with Fig. 1�a�, we
notice that the s dependence of Sq

�N� /N for N=10 is more
significant than that for N=2 �Eq. �48��.

The circles in Figs. 3�a� and 3�b� show Sq
�N� /N with s

=0.0 for q�1.0 and q�1.0, respectively, calculated with the
use of the expressions given by Eqs. �45� and �46�. They are
in good agreement with the dashed curves showing the exact

results which are given by Eq. �A13� and shown in Figs. 7�a�
and 7�b� in Appendix A. The squares show Sq

�N� /N with s
=0.5 calculated by using Eqs. �45� and �46�. The Tsallis en-
tropy is decreased by an introduced correlation. Because of a
computational difficulty �26�, calculations using Eqs. �45�
and �46� cannot be performed for larger N than those shown
in Figs. 3�a� and 3�b�.

2. Fisher information

The generalized and extended Fisher information matrices
are given by

gq
�N� =

N

�2�1 + �N − 1�s�
, �49�

g̃q
�N� =

Nq�q + 1�
�2�3 − q��2q − 1��1 + �N − 1�s�

. �50�

The results for q=1.0 given by Eqs. �49� and �50� are con-
sistent with those derived with the use of the multivariate
Gaussian distribution �19�. By using the Fisher information
matrices for N=1, gq

�1� and g̃q
�1�, given by Eqs. �A17� and

�A18�, we obtain

gq
�1�

gq
�N� =

g̃q
�1�

g̃q
�N� =

1

N
+ �1 −

1

N
�s , �51�

=�
s for N → � , �52�
1

N
for s = 0, �53�

1 for s = sU, �54�
0 for s = sL, �55�

�
which holds independently of q. The inverses of the Fisher
information matrices approach the value of s for N→�, and
are proportional to 1 /N for s=0.0. In particular, they vanish
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FIG. 6. �Color online� Uncorrelated distribution for N=1,
p�1��x1� �Eq. �62�, solid curves�, and marginal distributions of
pm

�2��x1� for N=2 �Eq. �61�, dashed curves�, and pm
�3��x1� for N=3

�Eq. �63�, chain curves� with q=0.5 and q=1.5 in �a� linear and �b�
logarithmic vertical scales.
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at s=sL. These features are clearly seen in Fig. 4, where the
inverses of the Fisher information matrices, gq

�1� /gq
�N� and

g̃q
�1� / g̃q

�N�, are plotted as functions of N for various s values.

III. DISCUSSION

A. Marginal distributions

In the present study, we have obtained the probability dis-
tributions, by applying the MEM to spatially correlated non-
extensive systems. We will examine our probability distribu-
tions in more detail. The x1 dependences of p�2��x1 ,x2� for
N=2 given by Eq. �11� with s=0.0 and 0.5 are plotted in
Figs. 5�a� and 5�b�, respectively, where x2 is treated as a
parameter. When s=0.0, the distribution is symmetric with
respect to x1 for all x2 values. When the correlated variability
of s=0.5 is introduced, peak positions of the distribution
appear at finite x1 for x2=0.5 and 1.0.

In the limit of s=0.0 �i.e., no correlated variability�,
p�2��x1 ,x2� given by Eq. �11� becomes

p�2��x1,x2�  �1 −
�1 − q��x1

2 + x2
2�

2�q
�2��2 �1/�1−q�

, �56�

which does not agree with the exact result �except for q
=1.0�, as given by

p�1��x1�p�1��x2�  �1 −
�1 − q��x1

2 + x2
2�

2�q
�1��2

+
�1 − q�2

4��q
�1��2�4x1

2x2
2�1/�1−q�

�57�

�p�2��x1,x2� , �58�

because of the properties of the q-exponential function de-
fined by Eq. �20�: expq�x+y��expq�x�expq�y�. By using the
q-product �q defined by �27�

x�qy � �x1−q + y1−q − 1�1/�1−q�, �59�

we may obtain the expression given by

p�1��x1��qp�1��x2�  �1 −
�1 − q��x1

2 + x2
2�

2�q
�1��2 �1/�1−q�

, �60�

which coincides with p�2��x1 ,x2� given by Eq. �56� apart
from the difference between �q

�1� and �q
�2�. In deriving

Eq.�60�, however, we have not included normalization fac-
tors of p�1��x1� and p�1��x2�.

In order to study the properties of the probability distri-
bution of p�2��x1 ,x2� in more detail, we have calculated its
marginal probability �with s=0.0� given by

pm
�2��x1� =� p�2��x1,x2�dx2  �1 −

�1 − q�x1
2

2�q
�2��2 �1/�1−q�+1/2

.

�61�

The dashed curves in Figs. 6�a� and 6�b� show pm
�2��x1� in

linear and logarithmic scales, respectively. The marginal dis-
tributions are in good agreement with the solid curves show-
ing p�1��x1� �Eq. �A5��,

p�1��x1�  �1 −
�1 − q�x1

2

2�q
�1��2 �1/�1−q�

. �62�

In the case of N=3, the distribution given by Eq. �32� yields
its marginal distribution �with s=0.0� given by

pm
�3��x1� =� � p�3��x1,x2,x3�dx2dx3

 �1 −
�1 − q�x1

2

2�q
�3��2 �1/�1−q�+1

. �63�

The chain curves in Figs. 6�a� and 6�b� represent pm
�3��x1�,

which is again in good agreement with the solid curves
showing p�1��x1�. These results justify, to some extent, the
probability distribution adopted in our calculation.

The marginal distribution for an arbitrary N �with s=0.0�
is given by

pm
�N��x1� =� � p�N��x1, . . . ,xN�dx2 ¯ dxN �64�

 �1 −
�1 − q�x1

2

2�q
�N��2 �1/�1−q�+�N−1�/2

, �65�

 �1 −
�1 − qN�x1

2

2�N�2 �1/�1−qN�

, �66�

with

qN =
�N − 1� − �N − 3�q
�N + 1� − �N − 1�q

, �67�

�N =
�N + 2� − Nq

�N + 1� − �N − 1�q
. �68�

Equations �66�–�68� show that in the limit of N→� we ob-
tain qN=1.0 and �N=1.0, and pm

�N��x1� reduces to the Gauss-
ian distribution.

B. Comparison with related studies

One typical microscopic nonextensive system is the
Langevin model subjected to multiplicative noise, as given
by �28–30�

dxi

dt
= − �xi + ��i�t� + �xi�i�t� + H�I� �i = 1 – N� . �69�

Here � expresses the relaxation rate, H�I� denotes a function
of an external input I, and � and � stand for the magnitudes
of multiplicative and additive noise, respectively, with zero-
mean white noise given by �i�t� and �i�t� with the correlated
variability

��i�t�� j�t��� = �2��ij + cM�1 − �ij����t − t�� , �70�

��i�t�� j�t��� = �2��ij + cA�1 − �ij����t − t�� , �71�
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��i�t�� j�t��� = 0, �72�

where cA and cM express the degrees of correlated variabili-
ties of the additive and multiplicative noise, respectively. The
Fokker-Planck equation �FPE� for the probability distribution
p��xk� , t� �=p� is given by

�

�t
p = − �

i

�

�xi
��− �xi + H�p�

+
�2

2 �
i

�
j

��ij + cA�1 − �ij��
�2

�xi�xj
p

+
�2

2 �
i

�
j

��ij + cM�1 − �ij��
�

�xi
xi

�

�xj
�xjp� �73�

in the Stratonovich representation.
For additive noise only ��=0�, the stationary distribution

is given by

p��xi��  exp�−
1

2�
ij

�xi − �i��Q−1�ij�xj − � j�� , �74�

where �i=H /� and Q expresses the covariance matrix given
by

Qij = ��2/2����ij + cA�1 − �ij�� . �75�

When multiplicative noise exists ���0.0�, the calculation of
even stationary distributions becomes difficult, and it is gen-
erally not given by the Gaussian. Indeed, the stationary dis-
tribution for noncorrelated multiplicative noise with ��0.0,
��0.0, and cA=cM =0.0 is given by �17,28–30�

p��xi��  �
i
�1 − �1 − q�� xi

2

2�2��1/�1−q�

eY�xi�, �76�

with

q = 1 +
2�2

2� + �2 , �77�

�2 =
�2

2� + �2 , �78�

Y�xi� = �2H

��
�tan−1��xi

�
� . �79�

The probability distribution given by Eq. �76� for H=0 �cA
=cM =0� agrees with that derived by the MEM for �2

=�q
�1��2 �Eq. �A5��. For ��0.0, �=0.0, and H�0 �cA=cM

=0�, Eq. �76� becomes �17�

p�x�  	x	−2/�q−1�e−2H/�2x��x� , �80�

yielding the Fisher information given by

gq
�N� =

Nq4

�q
2 =

2N�q4

�2�2 , �81�

where �q
2=�2�2 /2� and ��x� is the Heaviside function.

The probability distribution for correlated multiplicative
noise ���0.0, cM �0.0� is also a non-Gaussian, which is

easily confirmed by direct simulations of the Langevin
model with N=2 �31�. In some previous studies �19–21�, the
stationary distribution of the Langevin model subjected to
correlated multiplicative noise with cM �0.0, �=0.0, and H
=� is assumed to be expressed by the Gaussian distribution
with the covariance matrix given by

Qij = �2�2��ij + cM�1 − �ij�� . �82�

This is equivalent to assuming that

�

�xi
�xi

�

�xj
�xjp�� �

�

�xi
��xi�

�

�xj
��xj�p�� = �2 �2p

�xi�xj
�83�

in the FPE given by Eq. �73�. By using such an approxima-
tion, Abbott and Dayan �AD� �19� calculated the Fisher in-
formation matrix of a neuronal ensemble with correlated
variability, which is given by

gAD
�N� =

NK

�2�1 + �N − 1�cM�
+ 2NK

=
N

�2�2�1 + �N − 1�cM�
+

2N

�2 , �84�

with a spurious second term �2NK�, where K
=N−1�i�d ln Hi��� /d��2=1 /�2 �Eq. �4.7� of Ref. �19� in our
notation�. Equation �84� is not in agreement with either Eq.
�49� or Eq. �50� derived by the MEM. Furthermore, the result
of AD in the limit of cM =0, gAD

�N� = �N /�2�2+2N /�2�, does
not agree with the exact result given by Eq. �81� for the
Langevin model. This fact casts some doubt on the results of
Refs. �19–21� based on the Gaussian approximation given by
Eq. �82� or �83�, which has no physical or mathematical jus-
tification. The Fisher information matrix depends on the de-
tailed structure of the probability distribution because it is
expressed by the derivative of the distribution with respect to
x, as given by

gq
�N� = − NqE� �2 ln p�1��x�

�x2 � . �85�

We must take into account the non-Gaussian structure of the
probability distribution in discussing the Fisher information
of nonextensive systems.

IV. CONCLUSION

We have discussed the effects of spatially correlated vari-
ability on the Tsallis entropy and Fisher information matrix
in nonextensive systems, by using the probability distribu-
tion derived by the MEM. Although the analytical distribu-
tion obtained in the limit of s=0.0 does not hold the relation
given by p�N���xk��=�i=1

N p�1��xi� for q�1.0, it numerically
yields good results �Fig. 3�, reducing to the multivariate
Gaussian distribution in the limit of q=1.0. Our calculations
have shown that �i� the Tsallis entropy is decreased by both
positive and negative correlations, and �ii� the inverses of the
Fisher information matrices are increased �decreased� by a
positive �negative� correlation.

The difference between the s dependences of Sq and gq
arises from the difference in their characteristics: Sq provides
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us with a global measure of ignorance and gq a local measure
of a positive amount of information �4�. The item �ii� implies
that the accuracy of an unbiased estimate of fluctuation is
improved by negative correlation. If there is known, and
strong, negative correlation between successive pairs of data
points, estimating the unknown parameter as their simple
average must reduce the error, as negatively correlated errors
tend to cancel in taking the difference.

In connection with the discussion presented in Sec. III, it
is interesting to make a detailed study of the properties of
information entropies in the Langevin model subjected to
correlated as well as uncorrelated multiplicative noise. Such
a calculation is in progress and will be reported elsewhere
�31�.
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APPENDIX A: MEM FOR NONCORRELATED
NONEXTENSIVE SYSTEMS

We summarize the results of the MEM for nonextensive
systems �6,9,10,17,25�. In order to apply the MEM to N-unit
nonextensive systems, we impose three constraints given by

1 =� p�N���xi���
i

dxi, �A1�

� =
1

N
�

i

Eq�xi� , �A2�

�2 =
1

N
�

i

Eq��xi − ��2� , �A3�

where the q-dependent � and �2 correspond to �q and �q
2,

respectively, in �17�. For a given nonextensive system, the
variational condition for the Tsallis entropy given by Eq. �1�
with the constraints �A1�–�A3� yields the q-Gaussian distri-
bution given by �6,9,10,17,25�

p�N���xk�� = �
i=1

N

p�1��xi� , �A4�

with

p�1��x� =
1

Zq
�1� expq
− � �x − ��2

2�q
�1��2 � , �A5�

Zq
�1� =� expq�−

�x − ��2

2�q
�1��2 �dx �A6�

=��
2�q

�1��2

q − 1
�1/2

B�1

2
,

1

q − 1
−

1

2
� for 1 � q � 3, �A7�

�2�� for q = 1.0, �A8�

�2�q
�1��2

1 − q
�1/2

B�1

2
,

1

1 − q
+ 1� for 0 � q � 1, �A9��

�q
�1� =

3 − q

2
, �A10�

where B�x ,y� denotes the Beta function.

1. Tsallis entropy

Substituting the probability distribution given by Eq. �A4�
into Eqs. �1� and �2�, we obtain the Tsallis entropy expressed
by

Sq
�N� = �

N

2
�1 + ln�2��2�� for q = 1, �A11�

�1 − �cq
�1��N�

�q − 1�
for q � 1, �A12�

where cq
�1�=�q

�1��Zq
�1��1−q. We may express Sq

�N� in terms of Sq
�1�

by �17�

Sq
�N� = �

k=1

N

Ck
N�− 1�k−1�q − 1�k−1�Sq

�1��k �A13�

=NSq
�1� −

N�N − 1��q − 1�
2

�Sq
�1��2 + ¯ , �A14�

where Ck
N=N! / �N−k�!k!. Equation �A14� clearly shows that

the Tsallis entropy is generally nonextensive except for q
=1.0 for which Sq

�N�=NSq
�1�. Figures 7�a� and 7�b� show the N

dependence of the Tsallis entropy per element, Sq
�N� /N, of

uncorrelated systems �s=0.0�, which are calculated with the
use of Eq. �A13�. With increasing N, Sq

�N� /N is decreased for
q�1.0, whereas it is significantly increased for q�1.0.

2. The Fisher information

With the use of Eqs. �4� and �5� for �i=� j =�, the gener-
alized and extended Fisher information matrices are given by
�17�

gq
�N� = Ngq

�1�, �A15�

g̃q
�N� = Ng̃q

�1�, �A16�

with

gq
�1� =

1

�2 , �A17�

g̃q
�1� =

q�q + 1�
�3 − q��2q − 1��2 , �A18�

which show that Fisher information matrices are extensive.

APPENDIX B: MEM FOR CORRELATED
NONEXTENSIVE SYSTES

In the case of N=2, the probability distribution p�2��x1 ,x2�
given by Eqs. �11� and �12� is rewritten as
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p�2��x1,x2�  �1 − �1 − q���2��x1,x2��1/�1−q�, �B1�

with

��2��x1,x2� =
1

2
�a�x1

2 + x2
2� + 2bx1x2� �B2�

=�1y1
2 + �2y2

2, �B3�

where �i and yi �i=1,2� are eigenvalues and eigenvectors of
��x1 ,x2� given by

�1 =
1

2
�a + b� , �B4�

�2 =
1

2
�a − b� , �B5�

y1 =
1
�2

�x1 + x2� , �B6�

y2 =
1
�2

�x1 − x2� . �B7�

The averages of Eq�y1
2� and Eq�y1

2� are given by

Eq�y1
2� =

1

�q
�2��1

, �B8�

Eq�y2
2� =

1

�q
�2��2

, �B9�

from which we obtain �2 and s �2 as

�2 =
1

2
Eq�x1

2 + x2
2� =

1

2
Eq�y1

2 + y2
2� =

a

�q
�2��a2 − b2�

,

�B10�

s�2 = Eq�x1x2� =
1

2
Eq�y1

2 − y2
2� = −

b

�q
�2��a2 − b2�

.

�B11�

By using Eqs. �B10� and �B11�, a and b are expressed in
terms of �2 and s as

a =
1

�q
�2��2�1 − s2�

, �B12�

b = −
s

�q
�2��2�1 − s2�

, �B13�

which yield the matrix of A given by the inverse of the
covariance matrix of Q �Eq. �22��.

A calculation for the case of arbitrary N may be similarly
performed as follows. The distribution given by Eqs. �32�
and �33� is rewritten as

p�N���xi��  �1 − �1 − q���N���xi���1/�1−q�, �B14�

with

��N���xi�� =
1

2�a�
i

xi
2 + 2b�

i�j

xixj� �B15�

=�
i

�iyi
2, �B16�

where �i and yi are eigenvalues and eigenvectors, respec-
tively. With the use of eigenvalues given by

�i = �
1

2
�a + �N − 1�b� for i = 1, �B17�

1

2
�a − b� for 1 � i � N , �B18��

Eqs. �9� and �10� lead to

�2 =
1

N
�

i

Eq�yi
2� =

1

�q
�N�N

�
i
� 1

�i
�

=
�a + b�N − 2��

�q
�N��a − b��a + �N − 1�b�

, �B19�

s�2 =
1

N�N − 1��i�j

Eq�yi
2 − yj

2�

= � 1

�q
�N�N�N − 1�

��
i�j

� 1

�i
−

1

� j
�

= −
b

�q
�N��a − b��a + �N − 1�b�

. �B20�

From Eqs. �B19� and �B20�, a and b are expressed in terms
of �2 and s, as given by

a =
�1 + �N − 2�s�

�q
�N��2�1 − s��1 + �N − 1�s�

, �B21�

b = −
s

�q
�N��2�1 − s��1 + �N − 1�s�

. �B22�

APPENDIX C: THE CONDITION FOR A CONCEIVABLE s
VALUE

In order to discuss the condition for a physically conceiv-
able s value, we consider the global variable X�t� defined by

X�t� =
1

N
�

i

xi�t� . �C1�

The first and second q moments of X�t� are given by

Eq�X�t�� =
1

N
�

i

Eq�xi�t�� = ��t� , �C2�

Eq���X�t��2� =
1

N2�
i

�
j

Eq��xi�t��xj�t�� �C3�

=
1

N2�
i

Eq���xi�t��2� +
1

N2�
i

�
j��i�

Eq��xi�t��xj�t�� �C4�
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=
��t�2

N
�1 + �N − 1�s�t�� , �C5�

where �xi=xi�t�−��t� and �X�t�=X�t�−��t�. Since the glo-
bal fluctuation in X is smaller than the average of the local
fluctuation in �xi�, we obtain

0 � Eq���X�t��2� �
1

N
�

i

E���xi�t��2� = ��t�2. �C6�

Equations �C5� and �C6� yield

0 �
�1 + �N − 1�s�t��

N
� 1.0, �C7�

which leads to

sL � s�t� � sU, �C8�

with sL=−1 / �N−1� and sU=1.0.
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